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Summary

Dispersed dredged material from Gulf Intracoastal Waterway (GIWW)
placement areas in Laguna Madre have allegedly impacted nearby
seagrass ecosystems, the most extensive and important in Texas.  An
investigation was conducted to determine the extent of the alleged impact
on these areas.  As part of this larger investigation, this study used
sediment information and a numerical model to predict the effects of
dredged material placement, resuspension, and dispersion on water
column suspended sediment levels, especially in environmentally sensitive
seagrass beds.  The model study objective was to predict long-term
(annual) dispersion of dredged material placed in designated Placement
Areas (PA) and its effect on water column concentrations and light
conditions in Laguna Madre.

The Laguna Madre which consists of two shallow tidal bays transected
and connected by the GIWW, extends 183 km  from Corpus Christi Bay to
Port Isabel, Texas, near the Mexican border.  The average depth is about 1
m.  The total surface area is about 1,500 km2 of which 70 percent is
covered by seagrass.   Tidal currents and circulation are weak.  Wind-
waves and wind stress play important roles in sediment resuspension and
in  material transport.

Since its completion in 1949, dredging of shoaled sediments has been a
part of routine GIWW maintenance. The GIWW is 4.3 m deep and 38.1 m
wide (14 ft deep by 125 ft wide).  Dredging is typically performed on as
little as 20- to 38- month cycles to as much as 5- to 46-year cycles,
depending on the channel reach; the average total channel sedimentation
rate is about 1.6 × 106 m3  (2.1 × 106 yds3) per year, which is more than the
natural sediment inputs to the system.   GIWW construction formed
mounds of lagoon sub-bottom sediments along the waterway which have
been subject to erosion.  In addition, much of the maintenance material
disposed along the GIWW eventually is resuspended and dispersed. 
Channel maintenance materials are mainly fine-grained silts and clays less
than 62 :m.
 



  iii

The basis of much environmental concern is that an appreciable area of
Lower Laguna Madre apparently became bare sometime between a
seagrass survey in 1965 and a subsequent survey in 1974.  The deepest
area of Lower Laguna Madre apparently was converted from vegetated to
bare bottom, while some Upper Laguna Madre areas was converted from
bare to vegetated bottom.  Speculation was that increased turbidity and
decreased light penetrations resulting from dredged material disposal and
subsequent dispersion were the cause of the seagrass decline.  A seagrass
survey in 1988 showed no appreciable increase in bare-bottom areas.
 

Observations have shown that wave action is primary to the
resuspension of sediments; therefore, the first step in wave modeling was
to assess previous wave-prediction techniques by comparing the results
predicted by use of these techniques with new field data.  Waves observed
in Laguna Madre did not follow previous wind-wave relationships,
possibly because of high wave-dissipation due to friction.  Bottom
friction, white-capping, and seagrass friction are involved in wave
dissipation and are especially important in Laguna Madre.  Wave and
wind measurements were analyzed and results used to develop a new
wind-wave shear stress algorithm for the model system.  The new
algorithm is based on a partitioning of atmospheric shear stress. 
Expressions for atmospheric drag coefficient and depth-limited wave
height and period were also developed.
 

Measurements made of suspended sediment concentrations, suspended
floc-size distributions, and bed-material properties show suspended
sediment concentrations vary both spatially and temporally and overall
from about 5 to 500 mg/l.  Bed sediments are sands over most of Laguna
Madre with some limited areas of fine-grained sediments.  Measurement
information from this study, from associated studies, and from previous
studies was used to specify initial, boundary, sediment, and seagrass
conditions in the model and to validate model performance.
 

Field measurements and laboratory experiments were conducted to
develop information on settling, erosion, and depositional properties for
use in the sediment model.  In this study, sediment bed erodibility was the
key factor under investigation.  Erosion parameters were determined by
erosion experiments and characterization tests on material from the
system.  Erosion experiments were performed on undisturbed box cores
obtained from the lagoon.  Channel sediments were also used in the
laboratory to create simulated dredged-material slurries. Slurry samples
were allowed to settle and consolidate before erosion testing was begun.

Erodibility of dredged material depends upon the dredging and disposal
procedures as well as upon sediment properties. Field sampling was
performed around a working dredge to obtain characteristics of the fluid-
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mud-gravity underflow and the water-column plume formed by the
disposal.  The underflow extended about 500 m from the pipeline disposal
point.  Median fluid mud thicknesses were 0.45 m of which the top 60
percent was interpreted as underflow, and the remainder was deposit.  A
plume of 200 to 500 mg/l above ambient concentrations occurred above,
but not much outside of, the underflow footprint.

The effect of suspended sediment concentration on floc settling rate
due to flocculation was included in the model.  Information on this process
was obtained from the field and laboratory settling experiments.  Field
experiments were carried out to measure floc size on undisturbed
suspensions; a limited  number of underwater light and turbidity
measurements were made in the field; laboratory settling experiments
were performed, and several dozen water samples were collected, and
their organic and calcium carbonate contents were determined.

Because it is very difficult to separate effects of dredged material
resuspension by use of field data, the approach of this study was to apply a
physics-based sediment model, with and without dredged material
disposal, to gauge the water-column TSM effects from disposal area
resuspension and thereby to eliminate the variability in other conditions. 
One purpose of model simulations was to provide suspended sediment
time-series, at certain points within the system, to a Seagrass Productivity
Modeling (SPM) team for seagrass growth assessment. Another purpose
was to provide spatial distributions of water column impacts on
suspension concentrations and on availability of light to seagrasses.

Two-dimensional, depth-averaged, numerical hydrodynamic and
sediment transport models were developed and applied.  The modeling
effort was divided into estuarine circulation, wind-wave, and sediment
components.  Modeling was performed in two dimensions (2-D), depth-
averaged, using the U.S. Army Corps' Surface Modeling System (SMS ©)
and the TABS-MDS model.  TABS-MDS is an enhanced version of the
earlier RMA10-WES and RMA10 models that did not have sediment
transport capability.  The TABS-MDS was given new capabilities for this
study.
  

The TABS-MDS model performs implicit finite-element solutions of
the depth-averaged Navier-Stokes equations for turbulent flow.  Model
equations based on conservation of mass and momentum (shallow water
wave equations) include non-linear advective and friction effects.  The
latest bathymetry was compiled and used to develop the model mesh. 
Assignment of model roughnesses was based on the sediment type, bed
roughness features, depth, and the species of submersed aquatic
vegetation.  The effect of aquatic vegetation on hydraulic roughness was
obtained from literature. Precipitation and evaporation were included.
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Sediment grain-size distributions were discretized into one clay, two

silt and one sand fractions for TABS-MDS model simulations.  The
TABS-MDS sediment model simulates erosion and deposition processes
and includes bed processes such as consolidation and erodibility
relationships for grain size composition and bed density.  For a given
erosion rate (mass per unit area), the model uses the dry density of the bed
layers to compute the change in bed elevation.  The model uses a layered
bed structure to characterize the density and erodibility both  horizontally
and vertically in the bed.

During model adjustment, sediment parameters were adjusted in small
steps about their estimated values and the response of the model observed. 
In this way, the combination of parameters that were physically reasonable
and that minimize the differences between model and prototype data were
determined.  Model adjustment simulations lasted  long enough to wash
out the effects of initial conditions and to reach equilibrium concentrations
with respect to water-mass residence times.

After the model adjustment, the ability of the model to predict
suspended-sediment concentrations was quantified by comparing its data
to field data.  Suspended-sediment concentrations, channel deposition, and
overall placement area (PA) erosion rates were used in the comparisons. 
The initial model scenarios included annual simulations with and without
dredged material disposal.  Six PA were simulated. Results were used to
gauge water column impacts of the dredged material as it dispersed in the
year following disposal.  Results from 26 locations, mostly in Lower
Laguna Madre, were also used in the SPM seagrass growth model.

Sediment model comparison of disposal and no-disposal conditions
showed that disposal at, and subsequent dispersion from, six existing most
heavily used PAs had a relatively small effect on adjacent seagrass areas,
other than during the disposal period.  Areas which had the greatest TSM
impacts tended to be those specified as bare in the model and, therefore,
those areas that already had high TSM levels.  This explains why there
were only small differences in the 20 percent bottom irradiance contours
(subsequent to model disposals and first month dispersion).  Disposal
versus no-disposal channel shoaling differences were also relatively small,
only about a 6 to 15 percent decrease attributable to removing dredged
material from the system.  About 14 percent of dispersed dredged material
redeposited in the GIWW channel.

Several plans for alternate PA locations were tested with the model.  In
Lower Laguna Madre, PA 233 and 234 (located about 12 km north of Port
Isabel) have received the highest dredged material volumes in Laguna
Madre, and the adjacent channel area has long been identified as one of
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the major deposition and channel maintenance problems along the Texas
section of the GIWW.  Model tests were performed and these PA’s were
relocated to the west into deeper water.  Channel shoaling was reduced,
and more material was retained within the proposed sites.  A confined site
configuration was also tested for the PA’s.
 

Slightly to the north, PA 232, which has shoaled up over the years, was
moved from the west to the east side of the GIWW in the model.  Model
results indicated that in the new location channel shoaling was slightly
decreased.  Subsequent investigation indicated that seagrass was growing
at the proposed relocation site.

In Upper Laguna Madre, PA 186 to 189 were combined into a site on
the west side of the GIWW at a relatively deep area known as Emmord’s
Hole.  The intent was to concentrate immediate water column impacts into
an area that has no vegetation at the present time.  During the month of
disposal, the model indicated that an area about 700 m long would have
TSM increased by 26 mg/l.  During the subsequent 11 months,  TSM
increased by no more than 7 mg/l outside of Emmord’s Hole.
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